Recent Reductions in China's Greenhouse-Gas Emissions by David G. Streets¹*, Kejun Jiang², Xiulian Hu², Jonathan E. Sinton³, Xiao-Quan Zhang⁴, Deying Xu⁴, Mark Z. Jacobson⁵, James E. Hansen⁶ ## Accepted to SCIENCE'S POLICY FORUM MS# 1065226 Revised October 4, 2001 ¹Decision and Information Sciences Division, Argonne National Laboratory, Argonne, IL 60439, USA. ²Center for Energy, Environment and Climate Change, Energy Research Institute, Beijing 100038, China. ³Energy Analysis Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ⁴Forest Ecology and Environment Institute, Chinese Academy of Forestry, Beijing 100091, China. ⁵Department of Civil & Environmental Engineering, Stanford University, CA 94305, USA. ⁶NASA Goddard Institute for Space Studies, New York, NY 10025, USA. ^{*}To whom correspondence should be addressed. E-mail: dstreets@anl.gov ### Recent Reductions in China's Greenhouse-Gas Emissions David G. Streets¹*, Kejun Jiang², Xiulian Hu², Jonathan E. Sinton³, Xiao-Quan Zhang⁴, Deying Xu⁴, Mark Z. Jacobson⁵, James E. Hansen⁶ Using the most recent energy and other statistical data, we have estimated the annual trends in China's greenhouse-gas emissions for the period 1990-2000. We calculate that CO₂ emissions declined by 7.3% between 1996 and 2000, while CH₄ emissions declined by 2.2% between 1997 and 2000. These reductions were due to a combination of energy reforms, economic restructuring, forestry policies, and economic recession. The effects of these emission changes on global mean temperatures are estimated and compared with the effects of concurrent changes in two aerosol species, sulfate and black carbon. The prevailing wisdom about China's greenhouse-gas emissions is that they are increasing steadily, due to the large quantities of coal being used to fuel a fast-growing industrial economy, and most projections show China's greenhouse-gas emissions continuing to grow in the coming decades (1). However, we find that China's CO₂ emissions declined by 7.3% between 1996 (the peak year) and 2000 and CH₄ emissions declined by 2.2% between 1997 (the peak year) and 2000 (Fig. 1). This happened partly because China undertook a radical reform of its coal and energy industries (2). In addition, China's economy suffered during the Asian economic crisis of 1997-1998 to an extent not yet fully understood (3) and many factories shut down due to economic restructuring policies, resulting in a decline in coal production and consumption. Though _ ¹Decision and Information Sciences Division, Argonne National Laboratory, Argonne, IL 60439, USA. ²Center for Energy, Environment and Climate Change, Energy Research Institute, Beijing 100038, China. ³Energy Analysis Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ⁴Forest Ecology and Environment Institute, Chinese Academy of Forestry, Beijing 100091, China. ⁵Department of Civil & Environmental Engineering, Stanford University, CA 94305, USA. ⁶NASA Goddard Institute for Space Studies, New York, NY 10025, USA. ^{*}To whom correspondence should be addressed. E-mail: dstreets@anl.gov China is not a party to the Kyoto Protocol, these recent developments have important implications for the formulation of climate-change policies. Focusing just on CO₂ emissions from fossil-fuel combustion, against which we can compare other countries, we calculate that China's emissions dropped from 803 TgC (teragrams of carbon, 1 Tg = 1 million tonnes) in 1996 to 732 TgC in 2000, a reduction of 8.8%. This decrease, which China achieved while most other countries were increasing their emissions, represents about 1% of the global CO₂ emissions from fossil-fuel combustion in 2000 of 6900 TgC (1). In the period 1995-1999, CO₂ emissions from fossil-fuel combustion in western Europe increased by 4.5%, in the United States by 6.3%, in Japan by 3.0%, and in India by 8.8% (4). When energy data for the last five years began to emerge from China, it became clear that a transformation was in progress that had resulted in a reduction in energy use (2). This transformation had several aspects to it: the closing of small, inefficient industrial plants; improved efficiency of energy end-use; improved coal quality; the switching of many residential fuel users from coal to gas and electricity; technological progress in the energy-intensive sectors; and the opening up of coal and electricity markets. A slowdown in economic growth undoubtedly contributed to the decline in energy use as well (5). We have converted the changes in energy use and other activities into greenhouse-gas emissions using IPCC guidelines (6), as modified for China-specific conditions in the U.S.-sponsored China Climate Change Country Study (7). Coal combustion is the dominant contributor to CO₂ emissions in China and is estimated to have grown from 22.1 EJ in 1990 to a peak of 30.1 EJ in 1996 and then fallen to 25.1 EJ in 2000 (8). Oil and gas combustion both increased steadily during the decade, but their contributions to CO₂ emissions are small. The use of biofuels (largely fuelwood and agricultural residues) to provide cooking and heating services is widespread throughout rural China. However, its use has slowly declined during the decade from 9.2 EJ in 1990 to about 7.6 EJ in 2000 (8), as kerosene, gas, and electricity have supplanted traditional fuels. Carbon dioxide is also released during the manufacture of cement, and China's use of cement for new construction grew from 210 million tons in 1990 to 600 million tons in 2000 (9). As a result of the reversal of past deforestation practices and recent promotion of afforestation activities, the net uptake of CO₂ by forests in China has increased from 98 TgC in 1990 to 111 TgC in 2000 (10). Overall, we estimate that CO₂ emissions grew from 739 TgC in 1990 to a peak of 947 TgC in 1996, thence dropping to 878 TgC in 2000 (Fig. 1A), a 7.3% reduction in the period 1996-2000 (11). This recent trend illustrates the potential for a fundamental change in the long-term pattern of emissions growth in China. In the last few years China's energy data have become more prone to error and uncertainty than they were in the early 1990s. The National Bureau of Statistics has already revised 1999 coal output and consumption estimates (8) to reflect, among other things, unreported output from small coal mines that did not comply with closure orders. This has caused some skepticism about the reduction in energy use (12). Our analysis suggests that the reductions are real but not as great as previously believed. Further revisions to recent energy-use data are possible, which would necessitate a re-analysis of the data; however, we do not expect the trend to change. Estimating CH₄ emission trends is a more difficult proposition, because it involves consideration of several non-energy sources for which there are limited data available. Coal production is a large source of CH₄, and it is known that coal production in China declined in recent years by an even larger amount than coal consumption, from 1370 million tons in 1996 to 1030 million tons in 2000 (8). This was due to over-mining in the early part of the decade, which produced large stockpiles of coal that are now being drawn down (2). However, the benefit to CH₄ emissions was not proportionately large, because much of the reduction in coal production was achieved at small, surface mines, both local-government- and township-owned, which tend to be less "gassy." Thus, over all mine types, we found a net increase in coal-bed CH₄ emissions from 4.18 TgC in 1990 to 5.06 TgC in 1997, falling to 4.09 TgC in 2000 (13). Emissions from oil and gas extraction, processing, distribution, residential leakage, and combustion were also calculated, but these are small compared to coal emissions. A reduction in the emissions from residential biofuel combustion from 2.07 TgC in 1990 to 1.71 TgC was achieved. Agricultural emissions of methane grew in the middle of the decade but have leveled out recently. Emissions from rice cultivation declined slowly from 8.38 TgC in 1990 to 7.59 TgC in 2000, based on annual trends in cultivated area (9). Emissions from livestock were calculated for three animal classes—large animals, sheep/goats, and pigs—following the method and emission rates used in the China Country Study (7), which includes both enteric fermentation and manure contributions. The numbers of animals have increased substantially during the decade (9), leading to an increase in CH₄ emissions from 4.35 TgC in 1990 to 6.41 TgC in 2000. Two final contributions to CH₄ emissions were estimated, both of which are more uncertain: landfills and biomass burning. We estimate a large increase in landfill emissions from 1.82 TgC in 1990 to 3.26 TgC in 2000, due to changes in both the amount and composition of municipal garbage generated. Methane is also produced by the burning of biomass—whether of agricultural residues in the field after harvest, land clearing for production of new agricultural fields, deforestation, or simply wildfires in grassland and forests. Because this source is difficult to quantify and subject to interannual variability, we have adopted the estimate of Olivier *et al.* (*14*) for 1990, and included it at a constant annual value of 1.20 TgC across the decade. The combined estimate from all these source categories shows CH₄ emissions in China rising from 23.1 TgC in 1990 to a peak of 25.6 TgC in 1997 and then falling to 25.0 TgC in 2000 (Fig. 1B), a 2.2% reduction in the period 1997-2000. What do we expect for the future? Emissions of CO₂ (and probably CH₄) in China are thought to have been roughly constant since 2000 (15). Some of the most painful reforms have already been made, and the economy is once again picking up speed—though accession to the WTO is likely to bring a fresh wave of reforms to many sectors of the economy. A return to a slow increase in fossil-fuel use has been projected (15), but on a much shallower trajectory and clearly with a large volume of avoided emissions with respect to previous expectations. There is some room for optimism, however, that further increases in greenhouse-gas emissions in China might be averted for several years if energy-efficiency improvements continue, markets continue to open up and lead to price reforms, persistent inefficiencies in the coal industry are removed, and natural gas continues to penetrate at a rapid rate. Much will depend on the vitality of the Chinese economy in the coming years. We note that two other important species that influence radiative forcing, black carbon (BC) and sulfate, have been affected by these same trends in China. The importance of BC aerosol has been stressed by Hansen *et al.* (*16*) and Jacobson (*17*); its contribution to positive radiative forcing (warming) in the modern era may be second only to CO₂. Though we have insufficient information on changes in combustors and particulate controls to develop complete annual trends for BC, we do have two data points for 1995 and 2000. Our estimate is that BC emissions declined by 32%, from 1.34 Tg in 1995 (*18*) to 0.91 Tg in 2000 (*19*). The reduction in coal use was reinforced by a transition in urban areas from the use of raw coal to "smokeless" coal briquettes. Sulfur dioxide is converted in the atmosphere to sulfate aerosol, which has a negative radiative forcing (cooling). Emissions of SO₂ declined from a peak of 26.2 Tg in 1996 (*20*) to an estimated 20.8 Tg in 2000 (*19*), a reduction of 21%. A simple global-model calculation (17) of the effects of the 1995-2000 emission changes in China gives estimated changes in global mean temperatures over a 100-year period of +0.04 °K for SO₂, -0.026 °K for BC, -0.003 °K for CO₂, and +0.001 °K for CH₄, an overall net change in global mean temperatures of +0.012 °K. In sum, the changes in emissions in China from 1995-2000 could slightly enhance global warming over a 100-year period, due to the dominant effect of the SO₂ reductions. While this calculation illustrates the need to address aerosol species in global-warming policies (16), it is not intended to detract from the importance of the reductions in the conventional greenhouse gases CO₂ and CH₄ that China has achieved. China's experience suggests that there are actions that can be taken today in developing countries that would reduce their contribution to global greenhouse-gas emissions far below "business-as-usual" projections. ### **References and Notes** - 1. N. Nakicenovic *et al.*, *Emissions Scenarios*, A Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, U.K., 2000). - 2. J. E. Sinton, D. G. Fridley, *Energy Policy* **28**, 671 (2000). - 3. T. G. Rawski, *China Perspectives* **33**, 25 (2001). - 4. International Energy Annual 1999, U.S. Department of Energy Report DOE/EIA-0219(99) (2001). - 5. It has been claimed that China achieved these reductions in energy use and greenhouse-gas emissions while maintaining a high rate of economic growth. Overall GDP growth of 36% since the mid-1990s has been widely cited (see, e.g., New York Times, June 15, 2001; Natural Resources Defense Council, http://www.nrdc.org/globalwarming/achinagg.asp). It is now suspected that Chinese statistics claiming 5-6% annual GDP growth in the period 1997-1999 are exaggerated (3). - 6. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J. T. Houghton et al., Eds. (Intergovernmental Panel on Climate Change, Bracknell, U.K., 1997). - China Climate Change Country Study (Tsinghua University Press, Beijing, China, 1999). - 8. Energy data for China are taken from (2), updated by official Chinese government data for 1999 and 2000, as affirmed in Q. Y. Wang, *Nengyuan Zhengce Yanjiu* [*Energy Policy Research*], **1**, 57 (2001) (in Chinese) and National Bureau of - Statistics, Zhongguo Tongji Zhaiyao [China Statistical Abstracts] (China Statistics Press, Beijing, China, 2001) (in Chinese). - 9. *China Statistical Yearbook 2001* (China Statistics Press, Beijing, China, 2001) and earlier editions. - X. Zhang, D. Xu, "Potential Carbon Sequestration in Forests of China" (Technical Report, Forest Ecology and Environment Institute, Chinese Academy of Forestry, Beijing, China, 2001). - 11. The U.S. Energy Information Administration has reported that China's CO₂ emissions from fossil-fuel use declined by 17% between 1997 and 1999 (4). This estimate has been widely cited (e.g., *New York Times*, June 15, 2001; Natural Resources Defense Council, http://www.nrdc.org/globalwarming/achinagg.asp). We estimate a decline of 7% for fossil-fuel use in this period. The difference is primarily due to the recent re-assessment of 1999 coal use by the Chinese government (8). - A report from the U.S. Embassy in Beijing, *The Controversy over China's Reported Falling Energy Use* (August 2001), http://www.usembassychina.org.cn/english/sandt/energy_stats_web.htm, expressed doubt that energy use fell in China during the late 1990s, based on the unreliability of official statistics. An article based on this viewpoint was subsequently published in the *Washington Post*, August 14, 2001. - 13. Q. Dou et al., Technology Assessment and Development Strategies of Coalbed Methane Recovery and Utilization (China Coalbed Methane Clearinghouse, Beijing, China, 2000). - J. G. J. Olivier *et al.*, "Description of EDGAR Version 2.0," *Report 771060 002* (National Institute of Public Health and the Environment, Bilthoven, the Netherlands, 1996). - 15. J. E. Sinton, D. G. Fridley, *Sinosphere* **4**, 3 (2001). - J. Hansen, M. Sato, R. Ruedy, A. Lacis, V. Oinas, *Proc. Natl. Acad. Sci. U.S.A.* 97, 9875 (2000). - 17. M. Z. Jacobson, *Nature* **409**, 695 (2001). - 18. D. G. Streets, et al., Atmos. Environ. 35, 4281 (2001). - 19. Data developed for NASA's TRACE-P (Experimental and Theoretical Studies of Transport and Chemical Evolution over the Pacific) program. For information on the methodology used and the gridded emissions data, see the following web site: http://www.cgrer.uiowa.edu/people/carmichael/ACESS/Emission-data_main.html - 20. D. G. Streets, N. Y. Tsai, H. Akimoto, K. Oka, *Atmos. Environ.* **34**, 4413 (2000). - 21. This work was supported by the U.S. Department of Energy, Office of Fossil Energy, under contract W-31-109-Eng-38 with Argonne National Laboratory. The opinions are those of the authors alone and not the institutions with which they are affiliated. # Figure Caption Fig. 1. Trends in emissions of (A) CO₂ and (B) CH₄ in China, 1990-2000.